
Abstract: The purpose of our study is to reveal the
influences of video images on the autonomic function
quantitatively. As an approach, we applied the
principal component analysis to multivariate
biosignals including the R-R interval, blood pressure,
and respiration. The results showed that the dominant
frequency of the time-series of the second principal
component score occurred around 0.1 Hz while
viewing a stress-inducing image video.  Moreover, we
estimated the motion vectors from the video images.
The motion vector closely correlated with the second
principal component score in the sections where the
motion vector changed the vibration rate.   
Keywords:  Video images, motion vector, vection,
principal component analysis, mental stress

I. INTRODUCTION

There have been many video formats, screen size,
resolution and frame rate, on the Internet and in digital
broadcasting.  As Harding reported [1], video image
factors which evoked photosensitive seizures has been
well analyzed, knowledge on the visual factors which
would cause motion sickness or related unpleasant
influences on humans are wanting.  Conventional studies
have handled multivariate biosignals to evaluate mental
stress under visual tasks.  However, quantitative
evaluation of the relationship between the characteristics
of the stressors (video images) and multivariate
biosignals has not yet been studied.  In this paper, we first
of all applied the principal component analysis to
multivariate biosignals, then investigated the relationship
by using the motion vectors of the video image and the
principal component scores of multivariate biosignals.

II. METHODOLOGY

A. Experimental Procedure
Five healthy elderly subjects (from 52 to 71 yrs. old)

and six elderly subjects with mild hypertension or
diabetes mellitus (5 males and 1 female from 50 to 71 yrs.
old) participated in the experiments.  The subjects were
informed of the risks involved in advance, and their ECG,
blood pressure, and respiration were monitored during the
experiments.  For the 18-min length visual tasks, eleven
different contents of sports images with vection were
used.  In particular, we selected the image of mountain

bike riding because almost all the subjects felt unpleasant
conditions during and after watching the video image.
Note that the video camera was attached at the top of the
mountain bike handle.  The image was back-projected on
an 80-inch screen by the video projector (TH-L795J,
Panasonic) with XGA and 1400 ANSI lumen.  The
distance between the projector and the screen was 2 m
and the illumination was 10 lux.   The ECG was
measured on the chest and the blood pressure was
measured by a tonometry method (JENTOW770, Colin).
The respiration was measured with sensors around the
chest and the abdomen.  These biosignals were sampled
at the rate of 1000 Hz with a 16-bit resolution.

As a reference, we measured ECG data during cycling.
This was an actual field exercise.  The length of the
circuit path was approximately 900 m and there was a
steep uphill near the middle point of the path.  An
experiment was composed of six consecutive 2.5 minutes
of cycling with 2-minute rest trials.  The healthy young
subjects (from 21 to 24 yrs. old) were asked to pedal a
bicycle at 60 rpm as much as possible and to turn left at
each corner.   The incline changed at the second (from
down to up) and third (from up to down) corners.  The
ECG was sampled at the rate of 2000 Hz with a 12-bit
resolution.

B. Principal Component Analysis
The features of mental conditions do not always

appear as specific biosignals with the progression of time.
Thus, we arranged mental stress-related information from
several biosignals by the principal component analysis
(PCA).  Assuming { }ξk l

Ll( ) =1 denotes the normalized
time-series of L samples of a biosignal k, the biosignal
vector at frame l, composed of K kinds of biosignals, is
defined as

g l l l lK
T( ) = ( ) ( ) ( ){ }ξ ξ1 2, , ,L ξ .                       (1)

Calculating the K K×  correlation matrix from { }g l l
L( ) =1 ,

the eigenvalues λ p p

P{ } =1
 and the K ×1  eigenvectors

ϕ p p

P{ } =1
 are obtained ( P K≤ ).  Using g l T( )  and ϕ p , the

p-th principal component (PC)  score z lp ( ) is calculated

as follows:
z l lp

T
p( ) ( )= g ϕ .                         (2)

Specifically, 50-sec multivariate biosignals including
the RR interval, blood pressure, and respiration were
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processed by the PCA at each consecutive overlapping
segment to obtain the time-series of the PC scores.  Note
that the resampling frequency of the PC scores was
adjusted for the frame rate of the video image, that is, 30
frame/sec.  We then analyzed the PC scores by the
continuous Wavelet analysis to extract the autonomic
nervous activity-related information.
C. Motion Vector

We investigated a candidate of the stressor in the
vection-induced video image by the motion vector that is
used in the image compression technique.  We estimated
the motion vector by the block matching method [2].
Assuming the motion vector in an N N×  block as

v = [ ]v vx y

T
, ,                          (3)

the motion vector between consecutive frames is obtained
by
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Note that f x yl ( , ) is an image value, (i, j) is a pair of
range parameters for searching the similar property in a
block between l and l-1 frames, and arg ( )
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We estimated the motion vectors in each section from
the image size of 352 288×  pixels.  Note that the whole
image was divided into 25 ( 5 5× ) sections.   Moreover,
the motion vector was estimated in the block of 8 8×
pixels and then averaged in each section to estimate the
averaged motion vector.  Finally, we obtained the time-
series of the correlation coefficients among several
biosignals, the PC scores, and the averaged motion
vectors in each sliding window with a 10-sec interval.
The sliding window was shifted every frame.

III. RESULTS

Fig. 1 shows the RR interval (a) while watching the
mountain bike riding video and (b) during actual bicycle
exercise.  Both scenes for the subjects were similar,
although the subjects, types of stresses, and environments
differed.  The arrows show the start times of each event
(up-down and turn).  In the mountain bike riding video,
several events consist of quick motions after temporally
motion pauses.  For aged subjects, the RR interval varied
randomly.  The periodical wave in the RR interval was
sometimes obstructed by temporally emerging other
waves.  The variations for healthy aged subjects were
larger than those for subjects with mild hypertension or
diabetes mellitus.  During actual cycling, the time-
varying behavior of the RR interval clearly changed at the
second corner, because the incline changed from
downhill to uphill with a left turn.  At 6th trial, the

variations became small due to fatigue.  From this point
of view, the response of the subjects while watching the
mountain bike riding video was different from the
autonomic responses.

Fig. 2 shows the biosignals and PC scores while
watching the mountain bike riding video.  We selected
biosignals during the downhill riding scene with the
abrupt downs and the left turns based on subjective
proposals.  The original biosignals included several types
of periodical features and temporally emerging other
waves.  On the other hand, the second PC score extracted
a periodical feature, while the first and third PC scores
still included temporally emerging other waves.  Hence,
we easily estimated the frequency components of the
second PC score by the Wavelet analysis.  As a result, we
observed a frequency component of around 0.1 Hz under
unpleasant feeling conditions.  The feature was clearer for
healthy subjects than for subjects with mild hypertension
or diabetes mellitus.

Fig. 3 demonstrates the motion vector and the
correlation coefficient between the motion vector and
biosignal parameters as a function of time.  The view
positions ranged from a close section to a distant section.
The correlation coefficients at several sections of the
video image were studied.  Note that the correlation
coefficient between the second PC score and the blood
pressure was high (Fig. 2).  We observed a negative
correlation at the intervals around 35 sec and 65 sec,
without the view positions.  At these intervals, the motion
vector varied from quick vibration to slow motion.  On
the other hand, there was no correlation where the motion
vector showed a steady quick vibration.

IV. DISCUSSION

The autonomic response of the subjects while
watching the mountain bike riding video was apparently
different from the responses during actual cycling (Fig. 1).
Under vection-induced visual tasks, the RR interval
rhythm was temporally obstructed by other waves.
However, the measured biosignals did not always show
the same results.  Hence, arranging the biosignals by the
PCA was effective to track the autonomic nervous
activity-related information from several types of
biosignals that were measured simultaneously.  The
second PC score extracted a frequency component of
around 0.1 Hz that could be related to the Mayer wave [3].
Actually, the second PC score and the blood pressure
were quite similar to each other during the interval (Fig.
2).    Note that healthy elderly subjects did not show the
clear Mayer wave [4].  Hence, this finding should be
confirmed by further physiological studies.

The responses were clearly caused by the different
factors included in the video image.  One of the factors
was the video content, a scene of mountain bike riding
with the abrupt downs and the left turns.  This vection-



induced video image contained the differences between
the scene captured by the camera equipped on the handle
of the bicycle and the actual head motion of the rider
predictively controlled by the inner-model.  The evidence
is, however, difficult to assess.  Instead, we investigated
another candidate of a stressor that could be included in
the video image.  The motion vector represents a
structure of a scene at each section in an image screen,
that is, the frame rate, the vibration of objects in the
image screen, etc.  Thus, the motion vector is rather a
contents-free factor.

The motion vectors were correlated with the second
PC score and the blood pressure at several intervals of the
mountain bike riding video image, without the view
positions (Fig. 3).  The elderly subjects with mild
hypertension or diabetes mellitus did not always show
this responses, probably depending on the degree of the
disease.  At the intervals where the correlation
coefficients were significant, it was found that the motion
vector had a specific temporal pattern: quick vibration to
slow motion.  In the mountain bike riding video image,
changes in the motion vector reflected the driving
strategy of the mountain bike (quick motion after a
temporally motion pause).  However, this type of change
could be included in other video images.  As a result, a
particular vibration pattern of the motion vectors could
induce unpleasant conditions on humans.  Since age-
related disappearance of the Mayer wave was reported [4],
investigation of such factors in video images is important.

V. CONCLUSION

We studied the influence of vection-induced video
images on humans.  The PC score was effective for
extracting the meaningful information from the
multivariate biosignals.  That is, the second PC score
showed a clear periodical variation with respect to time,
and the period was correlated to the rhythm of blood

pressure-related Mayer wave.  We then investigated a
candidate of the stressor in the video image by the motion
vector.  The results showed that the mountain bike riding
video image induced unpleasant feelings and that the
motion vector was negatively correlated with both the
second PC score and the blood pressure at specific
intervals of the image sections.  At these intervals, the
motion vector varied from quick vibration to slow motion.
On the other hand, there was no correlation where the
motion vector showed a steady quick vibration.  Hence,
the vibration pattern of the motion vector could be
important to assess the influence of a vection-induced
video image.  However, we have not yet concluded
whether the unpleasant feeling was caused by the content
of the vection-induced image or the structure of the image
scene (the frame rate, the vibration of objects, etc).
Moreover, further studies are required in terms of the
motion sickness [5].
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                                                 (a)                                                                                              (b)

Fig. 1.  RR interval (a) while watching the mountain bike riding video and (b) during cycling exercise.  In RR interval, R,
U/D, D, and L mean turn right, move upward and immediately downward, move downward, and turn left, respectively.
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                                  (a) biosignals                                                                                   (b) PC scores

Fig. 2.  Time-series of RR interval, blood pressure, and PC scores.  In RR interval, R, U/D, D, and L mean turn right,
move upward and immediately downward, move downward, and turn left, respectively (subject O).

Fig. 3.　Horizontal motion vectors (plus left / minus right) and correlation coefficients between motion vector and
biosugnals at each section (subject O).
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