Exploring Functional Activities using BioSP

Decomposition in BioSignal Processing

Tohru KIRYU

Graduate School of Science and Technology, Niigata University

Abstract: For decomposing a biosignal into its constituents, there have been two major approaches in this field: physiological and mathematical approaches. Decomposition of action potentials from an interference signal is an example of physiological decomposition. On the other hand, the Fourier transform decomposes a measured signal into complex exponential signal set, mathematically. Recently, some attractive approaches have been proposed for handling nonlinearity and nonstationarity of biosignals. Among them, the Multiple Signal Classification method, the Independent Component Analysis, and Matching Pursuit method in Wavelet analysis are described in this literature.

Measurement

System Function

BPES99 in Kobe Univ., Oct. 7, 1999

Two Major Approaches

depending on the Aim

- Mathematical Approach

orthogonal

- Physiological Approach

perception functional activities mechanics physiology nervous system anatomy

BPES99 in Kobe Univ., Oct. 7, 1999

Mathematical Approach

Fourier Transform

- Periodical Components

- signal and noise
- fluctuation

$$y(t) = \sum_{k=1}^{k} Y_k e^{jk} e^{jk}$$

example of heart rate variability

Mathematical Approach

PCA

- Orthogonal Components

- signal and noise
- data compression

$$y_{(K)} = \sum_{k=1}^{K} (\mathbf{y}^T \ k) \ k$$

example of electrocardiogram

BPES99 in Kobe Univ., Oct. 7, 1999

Physiological Approach

Motor Unit Decomposition

- Physiological Components

firing table

Measured Signal

$$x(t) = \int_{k=1}^{K} u_k(t)$$

motor unit action potentials

 fast-twitch, slow-twitch MUs

R. LeFever and C. J. De Luca: A procedure for decomposing the myoelectric signal into its constituent action potentials part I: Technique, theory, and implementation, IEEE Trans. BME, Vol. BME-29, 3, 149/157 (1982).

MU decomposition. An interference myoelectric signal is decomposed into its firing table of motor unit action potentials (MUAPs) by statistical analysis.

New Approaches

... from around 1990

Multiple Signal Classification

Independent Component Analysis

Matching Pursuit in Wavelet Analysis

BPES99 in Kobe Univ., Oct. 7, 1999

MUSIC

Multiple Signal Classification

Overview of MUSIC method. An eigenvector in noise subspace is orthogonal to the signal subspace.

References for MUSIC

from 1979

- V. F. Pisarenko: On the estimation of spectra by means of non linear functions of the covariance matrix, *Geophys. J. R. Astron. Soc.*, 28, 511(1972)
- R. Schmidt: Multiple emitter location and signal parameter estimation, *Proc. RADC Spectrum Estimation Workshop*, pp. 243-258 (1979).
- M. Akay: Detection and estimation methods for biomedical signals, *Academic Press* (1996).

Subspaces

BPES99 in Kobe Univ., Oct. 7, 1999

for MUSIC

Observation Model

$$y(n) = \sum_{k=1}^{K} a_k e^{j_{-k}n} + (n)$$

- orthogonal

$$e_{k} = (1 \ e^{j} \ {}_{k} \ e^{j2} \ {}_{k} \dots \ e^{j(N-1)} \ {}_{k})$$
$$(e_{k}^{*})^{T} \ {}_{K+1} = 0, \quad k = 1, 2, ..., K$$

Power Spectrum

$$P_{MU}(\) = \frac{1}{\sum_{i=K+1}^{L} \left| \{ \boldsymbol{e}^{*}(\) \}^{T} \right|^{2}}$$

Example of MUSIC

Estimation of Frequency Components from Noisy Signal

BPES99 in Kobe Univ., Oct. 7, 1999

Independent Component Analysis for Blind Separation

Observation Model

Overview of the ICA Multichannel observed signal is presumed to be composed of statistically independent components.

Reference for ICA

from 1995

- A. J. Bell and T. J. Sejnowski: An information maximization approach to blind separation and blind deconvolution, *Neural Comput*, Vol. 7, 6, 1129/1159 (1995).
- M. J. McKeown, S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, and T. J. Sejnowski: Analysis of fMRI data by blind separation into independent spatial components, *Hum Brain Mapp*, vol. 6, 3, 160/188 (1998).

Statistically Independent

for ICA

Statistical Definition

- independent

 $p(x_1, x_2, ..., x_M) = p(x_1)p(x_2) \quad p(x_M)$

- uncorrelated

 $E[x_k x_l] = E[x_k]E[x_l]$

$$E[(x_k - \mu_k)(x_l - \mu_l)] = 0$$

- orthogonal

 $E[x_k x_l] = 0$

Estimation Algorithm

$$W = \{I + f(c)c^T\}W$$
$$f(c) = 1 - \frac{2}{1 + exp(-c)}$$

$$\hat{c}=W$$

http://www.cnl.salk.edu/~scott/ica-download-form.html

Example of ICA

BPES99 in Kobe Univ., Oct. 7, 1999

Blind Separation of Speech Signals

Continuous Wavelet Transform

Time-Scale Analysis

Definition $W(a, b) = \int_{-}^{*} {a, b \choose t} y(t) dt$

- procedure

BPES99 in Kobe Univ., Oct. 7, 1999

Discrete Wavelet Transform

Wavelet Decomposition

Observation Model

 $y(t) = \int_{j=k}^{j=k} d_k^{(j)} (2^j t - k)$

- decomposition

$$y(t) = A_J(t) + D_J(t) + D_{J-1}(t) + \dots + D_1(t)$$

Two-scale Relation

- wavelet function $(t) = q_k \quad (2t - k)$

- scaling function

 $(t) = r_k (2t-k)$

Meyer Wavelet

Example of Wavelet Decomposition

Approximates and Details

Example of multiresolution analysis in the discrete Wavelet transform. Using the Daubechies-5, a surface myoelectric signal is decomposed into its approximate (A5) and some details (D1, ..., D5).

Matching Pursuit

Estimation of Several Types of Frequency Components

Observation Model

$$\boldsymbol{y} = \prod_{i=1}^{K-1} \left[\left(\boldsymbol{R}^{i} \boldsymbol{y} \right)^{\mathrm{T}} \boldsymbol{g}_{i} \right] \boldsymbol{g}_{i} + \boldsymbol{R}^{K} \boldsymbol{y}$$

time-frequency atom

$$\boldsymbol{g}_{i} = \frac{1}{\sqrt{S_{i}}} g\left(\frac{t - u_{i}}{S_{i}}\right) e^{j_{i}t}$$

$$\left\|\boldsymbol{g}_{i}\right\|=1$$

Նյ

I am just studying this approach. Don't ask me the detail

from 1993

- S. G. Mallat and S. Zhang: Matching pursuits with time-frequency dictionaries, *IEEE Trans SP*, Vol. 41, 12, 3397/3415 (1993).
- M. Akay: Detection and estimation methods for biomedical signals, *Academic Press* (1996).

Wavelet Dictionary

for Matching Pursuit

Gabor time-frequency atoms

$$\boldsymbol{g}_{i} = \frac{1}{\sqrt{S_{i}}} g\left(\frac{t - u_{i}}{S_{i}}\right) e^{j_{i}t}$$
$$= (s_{i}, u_{i}, j_{i})$$

BPES99 in Kobe Univ., Oct. 7, 1999

Example of Matching Pursuit

Analysis of Speech Signals

$$\boldsymbol{y} = \prod_{i=1}^{K-1} \left[\left(\boldsymbol{R}^{i} \boldsymbol{y} \right)^{\mathrm{T}} \boldsymbol{g}_{i} \right] \boldsymbol{g}_{i} + \boldsymbol{R}^{K} \boldsymbol{y}$$

Gabor time-frequency atoms

ftp://cs.nyu.edu/

S. G. Mallat and S. Zhang: Matching pursuits with time-frequency dictionaries, *IEEE Trans SP*, Vol. 41, 12, 3397/3415 (1993).

Conclusion

Decomposition Procedure

- Understanding observation model.
- Selecting approaches (physiological or mathematical approaches).
- Estimation of components.
- Interpretation of the time-varying behavior of components.

Analysis and Classification for BioSignal Interpretation

Example

physiological data

CWT: db6, 2:2:256, int+by scale+abs

BPES99 in Kobe Univ., Oct. 7, 1999

